Improved Estimation of Normalizing Constants From Markov Chain Monte Carlo Output

نویسنده

  • Perry DE VALPINE
چکیده

Normalizing constants of conditional distributions include Bayesian marginal likelihoods and likelihoods of mixture models, such as hierarchical models and state-space time-series models. A promising method for estimating such quantities was proposed by Chib and Jeliazkov (CJ) and improved by Mira and Nicholls using bridge sampling results. Here three additional improvements and one theoretical result for the methods of CJ are given. First, a different Metropolis–Hastings proposal density is used for estimating the normalizing constant than for the MCMC run. Second, a ratio of effective sample sizes is incorporated into the optimal bridge function to account for sequential dependence of the MCMC output. Third, the Moving Block Bootstrap is used to estimate the variance of the normalizing constant estimates, which is then minimized with respect to the CJ proposal density and bridge function. It is shown that the optimal proposal density for estimating the normalizing constant, regardless of the proposal density used for the MCMC, is the (unknown) full conditional density. Results from likelihood estimation for a state-space time-series model show that the improvements can decrease the standard error of the log-normalizing constant by an order of magnitude. The methods perform well even for a model that fits the data poorly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential Monte Carlo Samplers

In this paper, we propose a methodology to sample sequentially from a sequence of probability distributions known up to a normalizing constant and defined on a common space. These probability distributions are approximated by a cloud of weighted random samples which are propagated over time using Sequential Monte Carlo methods. This methodology allows us to derive simple algorithms to make para...

متن کامل

A Monte Carlo Metropolis-Hastings Algorithm for Sampling from Distributions with Intractable Normalizing Constants

Simulating from distributions with intractable normalizing constants has been a long-standing problem in machine learning. In this letter, we propose a new algorithm, the Monte Carlo Metropolis-Hastings (MCMH) algorithm, for tackling this problem. The MCMH algorithm is a Monte Carlo version of the Metropolis-Hastings algorithm. It replaces the unknown normalizing constant ratio by a Monte Carlo...

متن کامل

Advances in Markov chain Monte Carlo methods

Probability distributions over many variables occur frequently in Bayesian inference, statistical physics and simulation studies. Samples from distributions give insight into their typical behavior and can allow approximation of any quantity of interest, such as expectations or normalizing constants. Markov chain Monte Carlo (MCMC), introduced by Metropolis et al. (1953), allows sampling from d...

متن کامل

Markov Chain Monte Carlo Sampling for Evaluating Multidimensional Integrals with Application to Bayesian Computation

Recently, Markov chain Monte Carlo (MCMC) sampling methods have become widely used for determining properties of a posterior distribution. Alternative to the Gibbs sampler, we elaborate on the Hit-and-Run sampler and its generalization, a black-box sampling scheme, to generate a time-reversible Markov chain from a posterior distribution. The proof of convergence and its applications to Bayesian...

متن کامل

Sequentially Interacting Markov Chain Monte Carlo Methods

We introduce a novel methodology for sampling from a sequence of probability distributions of increasing dimension and estimating their normalizing constants. These problems are usually addressed using Sequential Monte Carlo (SMC) methods. The alternative Sequentially Interacting Markov Chain Monte Carlo (SIMCMC) scheme proposed here works by generating interacting non-Markovian sequences which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008